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Abstract

From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of 

neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored 

static and average connectivity methods, which by overlooking the fluctuation dynamics triggered 

by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces 

a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis 

(DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant 
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frontotemporal dementia (bvFTD) patients, Alzheimer’s disease (AD) patients, and healthy 

controls. We considered non-linear oscillatory patterns across combined and individual resting-

state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default 

mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised 

in both conditions; the motor network (MN); and the visual network (VN). These RSNs were 

entered as features for dementia classification using a recent robust machine learning approach (a 

Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four 

independent datasets with different MR scanners and recording parameters. The machine learning 

classification accuracy analysis revealed a systematic and unique tailored architecture of RSN 

disruption. The classification accuracy ranking showed that the most affected networks for bvFTD 

were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, 

specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 

0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the 

DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity 

= 83.01%). Moreover, the DFCA classification systematically outperformed canonical 

connectivity approaches (including both static and linear dynamic connectivity). Our findings 

suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional 

connectivity approaches and provide a pathophysiological characterization of global brain 

networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.
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1. Introduction

From molecular mechanisms to global networks, variable brain fluctuations are the hallmark 

of neurodegeneration. RSNs can be understood as dynamical systems presenting time-

dependent functional connectivity (FC) variations that influence brain function during health 

and disease (Breakspear, 2017; Sporns, 2014; Hutchison et al., 2013). Despite this highly 

variable environment, most RSN research on dementia only employs static FC (SFC) 

measures (i.e., averages of FC across the whole MR acquisition time) (Sporns, 2014). Also, 

the field has broadly favored linear correlation measures (e.g., Pearson’s R), which are blind 

to non-linear connectivity interactions. These limitations may partly explain why standard 

SFC analyses have yielded inconsistent sensitivity and specificity indices (Pievani et al., 

2014; Sedeño, 2017) in classifying between Alzheimer’s disease (AD) and behavioral 

variant frontotemporal dementia (bvFTD) patient groups (Pievani et al., 2014). The 

heterogeneous network fluctuations caused by neurodegeneration might not be captured by 

SFC and linear correlations, calling for non-linear FC methods and dynamical frameworks 

that outperform time-averaged connectivity (Liegeois et al., 2019). Here, we developed a 

Dynamic Connectivity Fluctuation Analysis (DCFA) which targets FC fluctuation across 

time and captures both linear and non-linear signal modulations (Fig. 1). We tested this 

framework’s accuracy and generalizability to discriminate among healthy controls and two 
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dementia subtypes (AD and bvFTD), based on 300 subjects (from three international 

dementia centers and online databases).

Dementia involves a world-wide health-system burden, with an increasing prevalence and 

incidence in the US and other high-income countries (Wu et al., 2017) as well as in low- and 

middle-income countries (LMIC) (Wu et al., 2017; Kalaria et al., 2008, 9; Parra et al., 2018; 

Ibanez and Kosik, 2020). Moreover, the neuropathology of neurodegenerative disorders may 

manifest differences due to varied social, cultural, and regional contexts (Alladi and 

Hachinski, 2018). Functional network variability (Whitwell et al., 2009; Noh et al., 2014; 

Ossenkoppele et al., 2015), together with socioeconomic disparities, may induce 

heterogeneous presentations of AD and bvFTD, thus requiring robust approaches for its 

accurate characterization across heterogeneous populations. Such variability may in part 

explain conflicting evidence pointing to the most affected functional networks for each 

disease. Whereas some studies have reported that the Default Mode Network (DMN) and the 

Salience Network (SN) are differentially affected in AD and bvFTD, respectively (Pievani et 

al., 2014), others show aberrant FC along those networks in both conditions (Agosta et al., 

2012; Filippi et al., 2019). Moreover, other networks, such as the EN, may also be disrupted 

in both dementia subtypes (Agosta et al., 2012; Badhwar et al., 2017). Therefore, there is a 

call for novel approaches that prove robust to sample heterogeneity.

Typical resting-state FC research assumes time-constant cross-regional interaction, 

establishing connectivity patterns as single association coefficients between the entire time-

series while ignoring temporal variations (Hutchison et al., 2013). Despite the undeniable 

contribution of this approach (Hutchison et al., 2013), increasing evidence suggests that 

dynamic FC (DFC) changes may add critical information about brain organization 

(Breakspear, 2017; Hutchison et al., 2013), at different time scales and frequencies (Chang 

and Glover, 2010; Yaesoubi et al., 2015). Indeed, FC variability reflects task demands 

(Fornito et al., 2015), learning (Bassett et al., 2011), working memory (Shakil et al., 2016), 

and different consciousness states (Greicius et al., 2008). Dynamical fluctuations are related 

to specific electrophysiological bands, supporting their neurobiological relevance 

(Tagliazucchi et al., 2012). These changes are traceable at the typical temporal resolution of 

fMRI, as well as other (faster or slower) time-scales (from seconds to minutes) (Handwerker 

et al., 2012). Therefore, FC fluctuations seem critical to form adaptive activity patterns 

across different time-scales (Hutchison et al., 2013). This could underlie the cognitive and 

behavioral flexibility required to tackle environmental demands –which can hardly be 

captured by studying encapsulated mechanisms rooted in fixed functional architectures 

(Hutchison et al., 2013).

The DFC technique proved sensitive to neurological alterations indexed by FC changes over 

short periods, usually considering segmented time-windows (Shakil et al., 2016; Bolton et 

al., 2020). Most existing studies have investigated AD or Parkinson’s disease (PD) 

(Hutchison et al., 2013), with only one reporting reduced DFC in FTD (Premi et al., 2019). 

Previous AD research has shown alterations in the DFC of the DMN-prefrontal cortex and in 

global oscillatory FC patterns (Filippi et al., 2019) correlated with cognitive symptom 

severity (Demirtas et al., 2017). Moreover, whereas a standard SFC approach discriminated 

early mild-cognitive impairment patients from controls with 62–72% accuracy, DFC yielded 

Moguilner et al. Page 3

Neuroimage. Author manuscript; available in PMC 2021 January 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a higher classification rate (80%) (Wee et al., 2016). Yet, this evidence presents several 

limitations. First, most of these studies (and others based on SFC approaches) overlook the 

combination of different RSNs as features to discriminate among dementias. Although the 

DMN and the SN are considered key altered networks in AD and bvFTD, respectively 

(Pievani et al., 2014), both present aberrant FC patterns in each disease (Agosta et al., 2012; 

Filippi et al., 2019). Moreover, other networks, such as the EN, have also been reported as 

impaired in these conditions (Agosta et al., 2012; Badhwar et al., 2017). Second, FC 

associations are generally estimated with linear metrics such as Pearson’s correlations, 

despite substantial evidence highlighting the relevance of non-linear FC (Moguilner et al., 

2018). Finally, the reliability and reproducibility of DFC findings remains a challenge given 

the lack of multicenter studies using computational decision-support methods, a robust 

framework to identify consistent biomarkers across countries (Humpel, 2011).

Against this background, we developed a novel DCFA framework and tested whether 

features based on connectivity fluctuations discriminate between AD and bvFTD across 

countries. Innovatively, this approach estimates interregional FC variability with a metric 

that captures both linear and non-linear associations, outperforming traditional seed-based 

functional connectivity metrics to characterize dementia (Moguilner et al., 2018). To 

evaluate the robustness of our pipeline, we employed an advanced machine-learning 

algorithm, the gradient boosting machines (GBM) (tuned by Bayesian hyperparameter 

optimization), with large training and test sets comprising 300 subjects from three 

international dementia centers and online databases. This allows testing the generalizability 

of our results, which proves critical for developing timely, cost-effective, and robust 

biomarkers (Sedeño, 2017). Moreover, unlike previous research, our approach allows 

assessing whether global brain dynamics (i.e., combinations between RSNs) proves more 

informative than single-network features. Considering the evidence above, we predicted that 

our DCFA pipeline would outperform SFC and linear DFC models in characterizing patients 

across centers. Furthermore, we hypothesized that models that factor in the combinations 

between fluctuations of two RSNs would outperform those targeting each network 

separately. In particular, in light of previous findings, we hypothesized that the combinations 

between the SN, the DMN, and the EN would be crucial to classify between bvFTD and AD 

patients, and also between the latter two groups and healthy controls. Lastly, as a 

complementary multimodal evaluation, we performed a one-sample comparison of DCFA 

and SFC relative to traditional anatomical MRI measures (surface-based morphometry, 

SBM).

2. Materials and methods

2.1. Participants

The study comprised 300 participants, with 150 individuals from our ongoing protocol 

(Donnelly-Kehoe et al., 2019; Baez et al., 2019; Sedeño et al., 2017; Santamaria-Garcia et 

al., 2017; Dottori et al., 2017; Sedeño et al., 2016; Melloni et al., 2016; Baez, 2016; Baez et 

al., 2014; Garcia-Cordero et al., 2019; Bachli, 2020) from three international clinical 

centers, and the remaining 150 belonging to the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) and the Neuroimaging in Frontotemporal Dementia (NIFD/LONI) 
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databases, jointly referred as “online database ” below. Following recommendations for 

multicenter MRI studies (Poldrack et al., 2017), the set group of participants consisted of 51 

healthy controls, 46 patients fulfilling revised criteria for probable bvFTD, and 53 with 

probable Alzheimer’s disease (AD), all recruited from centers with extensive experience in 

neurodegeneration: INECO Foundation, in Argentina (Country-1: 19 controls, 18 bvFTD 

patients, 15 CE patients); San Ignacio University Hospital, in Colombia (Country-2: 18 

controls, 15 bvFTD patients, 20 AD patients); and the frontotemporal dementia research 

group (FRONTIER) at the University of Sydney, in Australia (Country-3: 14 controls, 13 

bvFTD patients, 18 AD patients); and an online database (50 controls, 50 bvFTD patients, 

50 AD patients).

As in previous reports (Sedeño et al., 2017; Baez et al., 2014; Piguet et al., 2011; Melloni et 

al., 2016), clinical diagnosis was established by bvFTD and AD expert clinicians and 

supported by a standard clinical examination including extensive neurological, 

neuropsychiatric, and neuropsychological assessments (Supplementary information 1). 

Then, each case was reviewed in a multidisciplinary clinical meeting involving cognitive/

behavioral neurologists, psychiatrists, and neuropsychologists. The patients were impaired 

(i.e. in episodic memory for AD and prominent changes in personality and social behavior 

for bvFTD), as reported by caregivers. They were all in early/mild disease stages and did not 

fulfill criteria for specific psychiatric disorders. Patients presenting primarily with language 

deficits were excluded.

Patients from each group in each sample were matched on sex, age, and education with 

controls (Supplementary Table 1). No participant presented a history of drug abuse, and 

patients did not present other psychiatric or neurological diseases. All subjects provided 

signed informed consent in accordance with the Declaration of Helsinki. The study protocol 

was approved by each center’s institutional Ethics Committee.

2.2. Image acquisition

MRI acquisition and preprocessing steps followed the Organization for Human Brain 

Mapping guidelines (Poldrack et al., 2017) (Supplementary information 2). In the resting-

state protocol, participants were asked not to think about anything in particular, while 

remaining awake, still and with eyes closed (Sedeño et al., 2017; Melloni et al., 2016). As in 

previous multicenter research (Sedeño et al., 2017; Moguilner et al., 2018; Donnelly-Kehoe, 

2019; Dottori et al., 2017; Bachli et al., 2020), different scanners were used across centers, 

with diverse acquisition parameters (Supplementary Table 2). This variability is one of the 

strengths of multicenter approaches (Humpel, 2011), as it allows evaluating whether the 

same measure and machine-learning algorithm are sufficiently robust and reliable to 

discriminate among patients and controls despite methodological and sociocultural 

heterogeneity.

2.3. FMRI data preprocessing

For each preprocessing step, DPARSF called the Statistical Parametric Mapping (SPM 12) 

and the Resting-State fMRI Data Analysis Toolkit (REST V.1.7) to process the data. Before 

preprocessing, the first five volumes of each subject’s resting-state session were discarded to 
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ensure steady state magnetization. Then, the images were slice-time corrected (using as 

reference the middle slice of each volume) and aligned to the first scan of the session to 

correct head movement. To reduce the effects of motion and physiological artifacts, six 

head-motion parameters, as well as white matter (WM) and cerebrospinal fluid (CSF) 

signals, were removed as nuisance variables. WM and CSF masks for this procedure were 

derived from the tissue segmentation of each subject’s T1 scan in native space. Next, 

functional images were normalized to the MNI space using the echo-planar imaging (EPI) 

template from SPM (Ashburner and Friston, 1999), and then they were smoothed with an 8-

mm full-width half-maximum Gaussian kernel. Finally, data was band-pass filtered (0.01–

0.08 Hz) given the relevance of slow frequency in the analysis of resting-state networks (Fox 

et al., 2005; Raichle, 2009). Then, we compared the mean translational and mean rotational 

parameters between groups in each country through ANOVA: no differences were found in 

any of the centers (Table 1).

2.4. Data cleaning

To ensure that algorithms are fed with appropriate training data, and as a complement to the 

standard pre-processing pipeline described in Section 2.3, we further cleaned the BOLD 

fMRI time series by despiking the signal with a wavelet-based algorithm (Patel et al., 2014) 

(Fig. 1. B). This spatially-adaptive, wavelet-based method for identifying, modeling, and 

removing non-stationary events in fMRI time series caused by head movement is able to 

accommodate the substantial spatial and temporal heterogeneity of motion artifacts. 

Therefore, this procedure can remove a range of high- and low-frequency artifacts from 

fMRI time series, which may be linearly or non-linearly related to physical movements. The 

Wavelet Despiking algorithm comprises five key steps. First, each voxel time series is 

decomposed in the wavelet domain. Second, the maximum and minimum wavelet 

coefficients are defined. Third, the maximum and minimum coefficients of the 

decomposition are searched, as abrupt changes in time series are represented as chains of 

maximal and minimal wavelet coefficients. Then, the maximum and minimum coefficients 

are set to zero. Finally, after the spikes have been removed, the wavelet despiked (denoised) 

signal is recomposed into the time-series space by using the inverse wavelet transform. 

Importantly, wavelet denoising yields more robust results than traditional filters, such as 

time despike methods (Patel et al., 2014).

2.5. Time series segmentation

Using pre-processed and cleaned BOLD time series as input, we segment the time-series 

into non-overlapping time windows, reducing its dimensionality while avoiding serial 

correlations when compared to other segmentation methods (Haimovici et al., 2017) (Fig. 1 

C, Supplementary information 3). The aim of this step was to prepare our time-dependent 

analysis of dynamic connectivity.

2.6. Seed analysis and resting-state network definition

First, seed analysis was used to evaluate both linear and non-linear fMRI connectivity for 

both SFC and DCFA analyses using the Iϕ2 (details below) of five well-known RSNs (Fox et 

al., 2005): the SN, typically impaired in bvFTD (Sedeño et al., 2017; Sedeño et al., 2016; 

Agosta et al., 2013); the DMN, characteristically affected in AD (Greicius et al., 2004) but 
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also compromised in bvFTD (Zhou et al., 2010); the executive network (EN), affected in AD 

(Agosta et al., 2012) and in bvFTD (Filippi et al., 2019); and the motor network (MN) and 

the visual network (VN), less markedly compromised in AD (Badhwar et al., 2017) (Fig. 

1.D, Supplementary information 4).

2.7. Dependence measure

Dependence measures, such as Mutual Information (MI), capture both linear and non-linear 

dependencies. Yet, their application in fMRI studies is limited because of their low temporal 

resolution. MI calculation usually involves the estimation of probability distributions which 

require a high sample rate to yield adequate results. To overcome this issue, our DCFA 

analysis used rank statistics in a non-parametric and non-linear dependency measure called 

the Hoeffding’s phi-square (Iϕ2, Supplementary information 5) -an approach which 

circumvents the short-comings of probability estimations.

2.8. Feature engineering and data normalization

After obtaining the masked connectivity RSNs for each time segment, we spatially averaged 

the voxels of each network within the time segment to obtain a scalar connectivity value for 

each time segment. Then, we applied the standard deviation statistic to the values of each 

segment to assess the amount of fluctuation present in the RSN connectivity. Since this 

approach was employed in each of the segmented time series, considering five different time 

scales (i.e., 5, 10, 15, 20, and 25 time-points) for five different RSNs (DMN, SN, EN, MN 

and VN), we obtained a total of 25 features per subject (Fig. 1. E). Then, following feature 

engineering, we normalized (i.e. z-scored) each patient group (i.e., AD and bvFTD) features 

by subtracting the mean of the corresponding Control group feature sample and dividing it 

by its sample standard deviation (Donnelly-Kehoe, 2019). This normalization approach was 

also employed in the SFC analysis.

2.9. Machine learning classification

For our analysis within Country-1, and in order to obtain an independent test set to evaluate 

the generalizability of our model, we first split in half the dataset to create a training and 

testing set. Then, within the training sample, we performed a leave-one-out cross-validation 

(LOOCV) scheme for hyper-parameter tuning. After the model was trained and cross-

validated in this training sample, we evaluated the results in the other half of the data set 

which is independent from the training set. The following analysis involved training the 

model with the whole dataset corresponding to Country-1 to predict classification in the 

other two datasets (from Country-2 and Country-3). We have used the online database as a 

full out-of-sample validation, having an independent sample not only for testing, but also for 

training, with the aim to confirm the model’s reproducibility from scratch by arriving to the 

same conclusions starting from different training sets (Saito et al., 2015). Then, we trained 

the model with the whole dataset corresponding to Country-1 to predict classification in the 

other two datasets (from Country-2 and Country-3). We then used an independent training 

and test set from the online database, where each sample (i.e., controls, AD, and bvFTD 

groups) was divided in two groups, resulting in one half for training and one half for testing. 

We used a GBM classifier library called XGBoost (eXtreme Gradient Boosting), a 

classification algorithm employed in fMRI analysis. Compared to other algorithms, 
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XGBoost proves more robust and is less affected by irrelevant and redundant features 

(Chang et al., 2019). The algorithm was tuned by Bayesian optimization (Supplementary 

information 6) (Fig. 1.F).

2.10. Complementary comparisons with structural measures (MRI analysis)

Cortical morphometric features for the machine learning classification were obtained via 

SBM (Clarkson et al., 2011). This procedure provides regionally specific anatomical 

metrics, such as volume, curvature, regularity, and cortical thickness. Also, it avoids 

registration to a standard space, improving the parcellation process and thus offering reliable 

region-specific metrics to analyze structural changes (Clarkson et al., 2011). All T1 brain 

volumes were processed accordingly to obtain a complete morphometric description using 

the FreeSurfer’s (v 6.0) image analysis suite (Fischl, 2012). The morphometric procedures 

of this toolbox show good test-retest reliability across scanner manufacturers and field 

strengths (Fischl, 2012). Finally, the volume, area, and thickness from each segmentation 

based on the Desikan-Killiany parcellation of cortical and subcortical areas (Desikan et al., 

2006) were quantified to obtain the regional structural features for each subject.

3. Results

3.1. Classification within Country-1

The first analysis comprised the whole dataset from Country-1. Half the participants of each 

group (controls, AD, and bvFTD patients) were used in the training dataset for hyper-

parameter tuning with LOOCV validation, and the other half was employed as the testing 

dataset to measure generalization. The classification accuracy ranking plots (Fig. 2A) show 

that, for bvFTD against controls, the combination of SN and EN variability features 

provided the highest classification (accuracy = 83.33%, AUC = 0.91, sensitivity = 80%, 

specificity = 87.5%). For the AD vs. controls classification, the best features resulted from 

the combination of the DMN and the EN (accuracy = 86.67%, AUC = 0.90, sensitivity = 

83.33%, specificity = 88.89%). Finally, for the bvFTD vs. AD contrast, the best results 

stemmed from the combination of the SN and the DMN (accuracy = 82.35%, AUC = 0.89, 

sensitivity = 87.50%, specificity = 71.43%) (Fig. 2–3). All these results were obtained with 

the 15 time-point window; all other analyses yielded lower results for each classification 

model (Supplementary information 7).

3.2. Generalization to Country-2 and Country-3

To assess the robustness of our results, we trained with the complete Country-1 dataset and 

tested in the datasets from the other two countries, featuring different acquisition parameters 

and sociocultural characteristics. First, we trained with Country-1 data using a LOOCV 

validation scheme, and tested in the Country-2 dataset. For the bvFTD vs. controls 

classification, SN and EN variability features provided the highest classification (accuracy = 

88.89%, AUC = 0.94, sensitivity = 92.31%, specificity = 89.47%); for AD vs. controls, the 

combination of the DMN and the EN offered the best classification (accuracy = 89.47%, 

AUC = 0.88, sensitivity = 94.44%, specificity = 85%); and for the bvFTD vs AD 

classification, the combination of the SN and the DMN yielded the best results (accuracy = 

85.29%, AUC = 0.85, sensitivity = 80%, specificity = 89.47%) (Fig. 2–3). These results 
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were also obtained under a 15 time-point window. Then, we evaluated classification 

performance using Country-3 data. For the bvFTD vs. controls, SN and EN variability 

features provided the highest classification (accuracy = 87.50%, AUC = 0.95, sensitivity = 

88.89%, specificity = 85.71%); for AD vs. controls, the combination of the DMN and the 

EN offered the best results (accuracy = 84.38%, AUC = 0.92, sensitivity = 88.24%, 

specificity = 80%); and for the bvFTD vs AD classification, the combination of the SN and 

the DMN offered the highest outcomes (accuracy = 83.87%, AUC = 0.90, sensitivity = 75%, 

specificity = 93.33%) (Figs. 2, 3). These results were also obtained under the 15 time-point 

window (Supplementary information 7).

3.3. Classification with the online database

Next, we assessed the generalizability of our method using the online database (Fig. 2A, 

column 4). For bvFTD vs. controls, SN and EN variability features provided the highest 

classification (accuracy = 86%, AUC = 0.86, sensitivity = 84.62%, specificity = 87.50%); for 

AD vs. controls, the highest classification was obtained with a combination of the DMN and 

the EN (accuracy = 86%, AUC = 0.87, sensitivity = 87.5%, specificity = 84.62%); and for 

the bvFTD vs AD classification, the highest outcomes were obtained through a combination 

of the SN and the DMN (accuracy = 80%, AUC = 0.83, sensitivity = 82.61%, specificity = 

77.78%) (Figs. 2, 3). These results were also obtained under the 15 time-point window 

(Supplementary information 7).

3.4. Supplementary analyses results

To compare the performance of our non-linear DCFA with SFC and linear DCFA, we 

employed the same datasets and the same machine-learning pipeline, obtaining the following 

results:

3.4.1. Comparison of non-linear DCFA versus SFC—This analysis allowed 

evaluating whether DCFA outperforms the typical average connectivity analysis (SFC) using 

the Iϕ2 copula dependence method. The DCFA average classification accuracy across 

datasets was: 86.43% for bvFTD vs. controls, 86.63% for AD vs. controls, and 82.67% for 

bvFTD vs AD, outperforming SFC (76.66% for bvFTD vs. controls, 76.80% for AD vs. 

controls, and 76.72% for bvFTD vs AD) (Supplementary information 8).

3.4.2. Comparison of nonlinear DCFA versus linear DCFA analysis—We 

executed a DCFA but using R instead of the Iϕ2 copula dependence measure, to analyze the 

benefit of considering non-linear associations between brain regions. The resulting average 

classification accuracy across databases for linear DCFA was: 73.57% for bvFTD vs. 

controls, 70.74% for AD vs. controls, and 70.22% for bvFTD vs AD -once again, 

outperformed by nonlinear DCFA (Supplementary information 9).

3.4.3. Comparison of nonlinear DCFA versus T1 atrophy measures—To 

compare the classification results yielded by connectivity (both DCFA and traditional SFC) 

with those obtained through brain structural T1 atrophy, we employed non-parametric tests 

to track statistically significant differences between ROC curves (Venkatraman, 2000) for 

the two comparisons (i.e., DCFA vs. SFC, and DCFA vs. atrophy). In this approach, the 
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equality of the curves is analyzed at all operating points, and a reference distribution is 

generated by permuting the pooled ranks of the test scores for each classification. We found 

that, although the atrophy-based classification was significantly higher than SFC (Fig. 4A), 

it was not statistically different from that yielded by DCFA (Fig. 4B).

4. Discussion

Results provide the first non-linear dynamical fluctuations pathophysiological 

characterization of global RSN in AD and bvFTD across multicentric data. The non-linear 

DFCA yielded a better classification between controls, AD, and bvFTD across centers 

compared to canonical connectivity approaches (including both static and linear dynamic 

connectivity). The classification accuracy ranking showed that the SN-EN pair offered the 

best classification between bvFTD and controls; whereas the DMN-EN pair provided the 

highest classification between AD and controls; and the SN-DMN pair offered the best 

classification between bvFTD and AD. Previous evidence suggests that bvFTD targets the 

SN, a network responsible for social-emotional-autonomic processing, and networks 

comprising the executive abilities (Ranasinghe et al., 2016; Ibanez and Manes, 2012; Baez et 

al., 2014; Baez et al., 2016; Baez et al., 2016; Baez et al., 2016; García-Cordero, 2016; 

García-Cordero et al., 2015; Ibáñez, 2018; Ibáñez et al., 2017). As regards AD, disruptions 

of DMN, a network associated with autobiographic memory and hubs affected in AD, have 

been reported in mild cognitive decline and AD (Grieder et al., 2018), along with EN 

alterations (Zhao et al., 2018). Our results show that these networks were affected in each 

condition following the ranking of expected compromise. When comparing bvFTD with 

AD, divergent network connectivity patterns emerged between the DMN and the SN, 

consistent with known reciprocal network combinations and the strength and deficit profile 

of each disorder (Zhou et al., 2010). Moreover, distinct MRI atrophy patterns in regions 

associated with the DMN and the SN discriminate between these dementias, with a similar 

anatomical involvement measured as FDG-PET hypometabolism (Foster et al., 2007), and in 

amyloid ligand Pittsburgh compound B (PiB) (Rabinovici et al., 2011). Here, network 

combinations afforded higher classification accuracy, suggesting that the pathophysiological 

profile of specific dementia types involves a distributed pattern of fluctuating RSNs rather 

than disruptions of a single, static, linear network. The classification accuracy ranking 

analysis enabled us to weigh each RSN combination, yielding the expected relevance for AD 

and bvFTD, with other networks (e.g., MN and VN) emerging as noncontributing factors for 

classification. Higher classification accuracy was obtained when training with the whole 

Country-1 dataset and testing with the Country-2 and Country-3 datasets, in comparison 

with training with half Country-1 dataset and testing with the other half. As in the latter case 

we used a smaller training dataset, subtle differences can be observed in an under-fitting 

model, thus resulting in (relatively) lower classification scores. Notably, the results of this 

data-driven approach were consistent despite heterogeneous acquisitions.

Unlike previous methods, our data-driven machine-learning approach showed a disease-

specific disturbance of dynamic temporal fluctuations in key RSNs, providing insights into 

the pathophysiological mechanisms of bvFTD and AD. Previous studies have adopted 

temporally stationary characterization of the SN in bvFTD (Pievani et al., 2014) and the 

DMN for AD (Agosta et al., 2012; Greicius et al., 2004). The dynamic temporal nature of 
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brain activity, as revealed via fMRI time-series fluctuations, should be affected differentially 

by aging and neurodegeneration. Even while assuming that RSNs are static in the spatial 

domain, our report taps on brain dynamics using static parcellations of brain networks, as 

done before (Deco et al., 2017; Tagliazucchi et al., 2012; Glomb et al., 2018; Ipiña, 2020; 

Stevner et al., 2019). Atypical fluctuations are a basic outcome in neurodegeneration at 

different levels across different mechanisms (Fornito et al., 2015). Findings suggest 

pathophysiological fluctuations in neurodegeneration, as already described at different 

levels, including neuroligins and neurexins, histaminergic, proteome, copper, and metabolic 

perturbations, as well as white matter, neural synchrony, and global brain dynamics (Filippi 

et al., 2019). These multilevel mechanisms, from molecular to large-network assemblies, 

may potentially have an effect on the dynamical network fluctuations of neurodegeneration.

We found that inclusion of FC fluctuations increased classification accuracy for each 

dementia subtype. Previous studies showed that differences in brain meta-state dwell time, 

particularly in DMN states, is a hallmark of AD. Decreased global metastability between 

functional networks indicates that oscillatory patterns are progressively altered over the AD 

continuum (Demirtas et al., 2017). Notably, there is a decline of DFC fluctuations in aging 

(Chen et al., 2017), and the disruption of DMN dynamics increases cognitive impairment 

(Wee et al., 2016). In FTD, diminished fluidity has been shown for transitioning between 

brain states (Premi et al., 2019). Such switching in everyday life may be associated with the 

fluctuations of a self-organized DFC system, providing the healthy neural substrate needed 

for cognitive tasks (Deco and Corbetta, 2011). Computational modelling has shown that FC 

fluctuations represent a fundamental emergent feature of large-scale dynamics that supports 

flexible cognition (Deco and Corbetta, 2011). Thus, abnormal transient activity of RSNs 

may provide relevant information for detecting neurodegeneration.

Traditional DFC analyses using time windows are based on linear correlations. Non-linear 

relationships have been observed between gray matter atrophy (Gispert et al., 2015) and 

disease severity. EEG/MEG-derived Synchronization Likelihood (SL) has shown linear and 

non-linear abnormalities on long-range networks in dementia (Stam et al., 2006). Other non-

linear measures based on mutual information have proven robust to better characterize brain 

networks in FTD (relying on both EEG (Dottori et al., 2017) and fMRI (Moguilner et al., 

2018) data). Unlike all these antecedents, in which the measured parameters were fixed for 

specific contexts, we developed a data-driven pipeline without using any a-priori parameter 

such as a specific window length or specific RSN disturbance using a Bayesian 

hyperparameter optimized XGBoost algorithm, enabling us to obtain more generalizable 

results.

4.1. Relevance for research on disease heterogeneity and diversity

While the classification accuracy ranking of RSNs was similar between measures, higher 

non-linear DCFA scores were obtained across different groups and datasets (Supplementary 

information 9 and 10) when compared to linear DCFA and SFC. Multi-centric approaches 

on diverse populations are needed to find robust and effective biomarkers of global 

applicability (Sonnen et al., 2008). Population heterogeneity may be underrepresented when 

local datasets are exclusively employed, especially when using data from high-income 
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countries[12]. Developing countries have unique interactions between genetics, 

environmental factors and socioeconomical status (Parra et al., 2018). There is an ongoing 

need for accurate dementia markers to complement traditional clinical work (Alladi and 

Hachinski, 2018). Differential diagnosis between AD and bvFTD may prove difficult, as 

bvFTD could frequently be misdiagnosed as AD, especially in clinical contexts where the 

costly PET amyloid and CSF markers are not readily available in LMIC (Piguet et al., 2011). 

Major challenges in neuroradiological protocol design initiatives in LMIC also involve the 

lack of expertise to perform standardized pre-processing and accurate image interpretation 

(Schnack et al., 2010; Baez and Ibanez, 2016). Against this background, our data-driven 

machine learning DCFA pipeline brings a first step to include dynamical networks in the set 

of complementary, innovative, and affordable tools for decision-support diagnostic tools.

4.2. Limitations and future studies

Our work features some limitations. First, AD and bvFTD diagnoses were based on clinical 

expertise but without pathological or genetic confirmation. However, the diagnostic criteria 

for both AD and bvFTD fulfilled standard diagnostic guidelines. This limitation is shared by 

similar works employing traditional statistical and machine-learning techniques to study 

dementia (Donnelly-Kehoe, 2019; Zhou et al., 2010). Also, even when the results suggest 

robust classification despite absent definite diagnosis, future studies may combine 

confirmative biomarkers to evaluate the effectiveness of neuroimaging metrics. Second, our 

work focused on functional connectivity, leaving the evaluation of the combination between 

fMRI and structural (MRI) or metabolic PET imaging for future studies. The objective of 

this work was to compare the DFCA of functional connectivity fluctuations with traditional 

seed-based FC measures. Although this excludes multimodal comparisons with atrophy 

measures, which have been done before (Sedeño et al., 2017; Donnelly-Kehoe, 2019), we 

performed a complementary analysis with atrophy-based classification outcomes (See 

Section 3.4, and Fig. 4). While the use of atrophy features provided significantly higher 

classification results than SFC as previously reported (Sedeño et al., 2017; Donnelly-Kehoe, 

2019), these were not significantly different from those obtained through dynamical 

fluctuation features. Future studies may combine atrophy features with dynamic connectivity 

as well as other imaging modalities for multimodal classification. While acknowledging the 

relevance of combining multimodal imaging, the economic constraints in low-income 

countries may pose difficulties in employing combined or costly biomarker protocols, such 

as those advanced in the NIA/AA β-Amyloid and pathologic tau PET framework (Jack et 

al., 2018). However, MR functional methods may be as effective as other biomarkers in 

providing early diagnosis (Iturria-Medina et al., 2016). Third, no heart rate and respiration 

measures were available during acquisition, which may have potentially confounded our 

results if groups differed significantly in this regard. Although this limitation is shared by 

similar works in neurodegeneration (Grieder et al., 2018; Filippi et al., 2013), further studies 

should include the physiological rhythms (cardiac rhythm, respiration) as potential features 

in the machine learning classification. Fourth, although we found a specific set of best 

performing RSN features as a consistent marker across samples for each classification, we 

did not systematically assess the statistical significance among all results, as the scope of 

this work is to generate a data-driven model, rather than performing statistical hypothesis 

testing. Therefore, we did not prove the statistical significance of the feature within ranking 
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itself, but we can assess the reproducibility of the results regarding the best performing 

features across datasets. Lastly, future longitudinal assessments using the present approach 

may unveil how dynamic network fluctuations unfold over the course of each disease.

5. Conclusions

Although linear, static, averaged FC methods have been proposed as potential biomarkers 

for neurodegenerative diseases (Pievani et al., 2014), inconsistent results (Zhou et al., 2010; 

Dopper et al., 2014; Whitwell et al., 2011; Balthazar et al., 2014) and current evidence 

pointing to dynamical fluctuations in health and disease (Breakspear, 2017; Hutchison et al., 

2013) call for a different approach. Our study shows that dynamical brain fluctuations boost 

dementia classification, providing a data-driven hierarchical model of brain network profiles 

that mirrors the expected pathophysiological compromise in AD and bvFTD across 

heterogeneous acquisition contexts. Neural signals continuously combine, dissolve, and 

reconfigure to produce adaptive patterns of activity over various time scales, producing a 

repertoire of multi-stable brain states. Our findings provide insights into specific dynamical 

perturbations of oscillatory brain network architecture in dementias, leading to more 

plausible biological models, better disease characterization, and, eventually, more targeted 

drug treatments.
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Fig. 1. 
Preprocessing and machine learning pipeline. (A) In order for the RS-BOLD data from the 

two groups to be classified, we employed the DPARSF pipeline for RS-fMRI data 

preprocessing, followed by band-pass filtering (0.01–0.08 Hz) to obtain the preprocessed 

time-series. (B) By using a wavelet-based algorithm, we employed the wavelet coefficients 

to remove large signal spikes without losing relevant information to obtain the cleaned time 

series. (C) We segmented the RS time series into non-overlapping windows of different 

time-scales (i.e., 5, 10, 15, 20 and 25 time-points). (D) We defined seeds for the DMN, SN, 

EN, VN, and MN networks to obtain the RSNs by employing the Iϕ2 copula dependence 

measure. Then we used standard masks to identify the voxels for each network. (E) We 

spatially averaged the voxels to obtain one RSNs time series for each network. Then we used 

the standard deviation statistic to obtain the fluctuation features for later normalization. (F) 
For testing different feature combinations, we used a LOOCV validation scheme for 

Bayesian hyper-parameter tuning to obtain trained XGBoost models, and then we tested our 

classification with independent datasets. For ROC analysis, we defined bvFTD group as the 

“positive ” class and AD group as the “negative ” class, allowing the sensitivity and 

specificity metrics being applicable to patients groups comparisons, as reported previously 

(Caso et al., 2012). RS-BOLD: fMRI resting-state BOLD datasets; masked RSNs: masked 

resting-state networks; FEATURE ENG: Feature engineering; DATA NORM: Data 

normalization.
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Fig. 2. 
Classification accuracy rankings and average results. Classification accuracy ranking and 

average results. (A) Binary classification results for bvFTD vs. controls, AD vs. controls, 

and bvFTD vs. controls, training and testing within Country-1 (first column), training with 

Country-1 and testing with Country-2 (Generalization to Country 2, second column), 

training with Country-1 and testing with Country-3 (Generalization to Country-3, third 

column), and the results from the training and testing of our model with an online databases 

(ADNI and NIFD, fourth column). Classification accuracy ranking ordered from highest to 

lowest accuracy rates shows the best set of features for each classification. (B) Average 

results for each classification type over the four analyses showing mean sensitivity (y-axis), 

specificity (x-axis) and accuracy (average classification accuracy across databases: 87.64% 
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for bvFTD vs. controls, 87.95% for AD vs. controls, and 84.97% for bvFTD vs AD). C: 

Healthy control; bvFTD: behavioral-variant frontotemporal dementia; AD: Alzheimer’s 

disease; SN: salience network; EN: executive network; DMN: default mode network; VN: 

visual network; MN: motor network.
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Fig. 3. 
ROC curves and confusion matrices. First row: Each ROC curve represents the performance 

of the best resting-state networks for each binary classification model per country (SN + EN 

networks for bvFTD vs controls; DMN + EN networks for AD vs controls; and DMN + SN 

for bvFTD vs AD). Second to fifth rows: confusion matrices for each of the ROC curves of 

the first row (in percentage values). Controls: Healthy control; bvFTD: behavioral variant 

frontotemporal dementia; AD: Alzheimer’s disease; SN: salience network; EN: executive 

network; DMN: default mode network.
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Fig. 4. 
Statistical comparison of ROC curves. (A) ROC curves representing the classification 

performance for Country-1 for each classification pair, with their corresponding AUC value. 

In green, we show the ROC curve of the SFC classification using the best performing 

features for the classification (SN + EN networks for bvFTD vs controls; DMN + EN 

networks for AD vs controls; and DMN + SN for bvFTD vs AD). In blue, we present 

atrophy AUC results obtained from the classification based on the SBM analysis for each 

subject. To compare the classification results between the two methodologies, we employed 

a non-parametric permutation comparison test of the ROC curves (Venkatraman, 2000). All 

p -values < 0.05 show that there are statistically significant differences between methods for 

all classification pairs. (B) ROC curves representing the classification performance for 

Country-1 for each classification pair, with their corresponding AUC value. The ROC curve 

of the DCFA classification using the best performing features for the classification (SN + 

EN networks for bvFTD vs controls; DMN + EN networks for AD vs controls; and DMN + 

SN for bvFTD vs AD) is shown in red. Atrophy measures are plotted in blue. All p-values > 

0.05 show significant differences for A (SFC vs atrophy). But not for B (DCFA vs atrophy) 

in each classification pair.
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